3.477 \(\int \frac{1}{(a+a \sin (e+f x))^3 (c+d \sin (e+f x))} \, dx\)

Optimal. Leaf size=186 \[ -\frac{2 d^3 \tan ^{-1}\left (\frac{c \tan \left (\frac{1}{2} (e+f x)\right )+d}{\sqrt{c^2-d^2}}\right )}{a^3 f (c-d)^3 \sqrt{c^2-d^2}}-\frac{\left (2 c^2-9 c d+22 d^2\right ) \cos (e+f x)}{15 f (c-d)^3 \left (a^3 \sin (e+f x)+a^3\right )}-\frac{(2 c-7 d) \cos (e+f x)}{15 a f (c-d)^2 (a \sin (e+f x)+a)^2}-\frac{\cos (e+f x)}{5 f (c-d) (a \sin (e+f x)+a)^3} \]

[Out]

(-2*d^3*ArcTan[(d + c*Tan[(e + f*x)/2])/Sqrt[c^2 - d^2]])/(a^3*(c - d)^3*Sqrt[c^2 - d^2]*f) - Cos[e + f*x]/(5*
(c - d)*f*(a + a*Sin[e + f*x])^3) - ((2*c - 7*d)*Cos[e + f*x])/(15*a*(c - d)^2*f*(a + a*Sin[e + f*x])^2) - ((2
*c^2 - 9*c*d + 22*d^2)*Cos[e + f*x])/(15*(c - d)^3*f*(a^3 + a^3*Sin[e + f*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.521514, antiderivative size = 186, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {2766, 2978, 12, 2660, 618, 204} \[ -\frac{2 d^3 \tan ^{-1}\left (\frac{c \tan \left (\frac{1}{2} (e+f x)\right )+d}{\sqrt{c^2-d^2}}\right )}{a^3 f (c-d)^3 \sqrt{c^2-d^2}}-\frac{\left (2 c^2-9 c d+22 d^2\right ) \cos (e+f x)}{15 f (c-d)^3 \left (a^3 \sin (e+f x)+a^3\right )}-\frac{(2 c-7 d) \cos (e+f x)}{15 a f (c-d)^2 (a \sin (e+f x)+a)^2}-\frac{\cos (e+f x)}{5 f (c-d) (a \sin (e+f x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sin[e + f*x])^3*(c + d*Sin[e + f*x])),x]

[Out]

(-2*d^3*ArcTan[(d + c*Tan[(e + f*x)/2])/Sqrt[c^2 - d^2]])/(a^3*(c - d)^3*Sqrt[c^2 - d^2]*f) - Cos[e + f*x]/(5*
(c - d)*f*(a + a*Sin[e + f*x])^3) - ((2*c - 7*d)*Cos[e + f*x])/(15*a*(c - d)^2*f*(a + a*Sin[e + f*x])^2) - ((2
*c^2 - 9*c*d + 22*d^2)*Cos[e + f*x])/(15*(c - d)^3*f*(a^3 + a^3*Sin[e + f*x]))

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{(a+a \sin (e+f x))^3 (c+d \sin (e+f x))} \, dx &=-\frac{\cos (e+f x)}{5 (c-d) f (a+a \sin (e+f x))^3}-\frac{\int \frac{-a (2 c-5 d)-2 a d \sin (e+f x)}{(a+a \sin (e+f x))^2 (c+d \sin (e+f x))} \, dx}{5 a^2 (c-d)}\\ &=-\frac{\cos (e+f x)}{5 (c-d) f (a+a \sin (e+f x))^3}-\frac{(2 c-7 d) \cos (e+f x)}{15 a (c-d)^2 f (a+a \sin (e+f x))^2}+\frac{\int \frac{a^2 \left (2 c^2-7 c d+15 d^2\right )+a^2 (2 c-7 d) d \sin (e+f x)}{(a+a \sin (e+f x)) (c+d \sin (e+f x))} \, dx}{15 a^4 (c-d)^2}\\ &=-\frac{\cos (e+f x)}{5 (c-d) f (a+a \sin (e+f x))^3}-\frac{(2 c-7 d) \cos (e+f x)}{15 a (c-d)^2 f (a+a \sin (e+f x))^2}-\frac{\left (2 c^2-9 c d+22 d^2\right ) \cos (e+f x)}{15 (c-d)^3 f \left (a^3+a^3 \sin (e+f x)\right )}-\frac{\int \frac{15 a^3 d^3}{c+d \sin (e+f x)} \, dx}{15 a^6 (c-d)^3}\\ &=-\frac{\cos (e+f x)}{5 (c-d) f (a+a \sin (e+f x))^3}-\frac{(2 c-7 d) \cos (e+f x)}{15 a (c-d)^2 f (a+a \sin (e+f x))^2}-\frac{\left (2 c^2-9 c d+22 d^2\right ) \cos (e+f x)}{15 (c-d)^3 f \left (a^3+a^3 \sin (e+f x)\right )}-\frac{d^3 \int \frac{1}{c+d \sin (e+f x)} \, dx}{a^3 (c-d)^3}\\ &=-\frac{\cos (e+f x)}{5 (c-d) f (a+a \sin (e+f x))^3}-\frac{(2 c-7 d) \cos (e+f x)}{15 a (c-d)^2 f (a+a \sin (e+f x))^2}-\frac{\left (2 c^2-9 c d+22 d^2\right ) \cos (e+f x)}{15 (c-d)^3 f \left (a^3+a^3 \sin (e+f x)\right )}-\frac{\left (2 d^3\right ) \operatorname{Subst}\left (\int \frac{1}{c+2 d x+c x^2} \, dx,x,\tan \left (\frac{1}{2} (e+f x)\right )\right )}{a^3 (c-d)^3 f}\\ &=-\frac{\cos (e+f x)}{5 (c-d) f (a+a \sin (e+f x))^3}-\frac{(2 c-7 d) \cos (e+f x)}{15 a (c-d)^2 f (a+a \sin (e+f x))^2}-\frac{\left (2 c^2-9 c d+22 d^2\right ) \cos (e+f x)}{15 (c-d)^3 f \left (a^3+a^3 \sin (e+f x)\right )}+\frac{\left (4 d^3\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (c^2-d^2\right )-x^2} \, dx,x,2 d+2 c \tan \left (\frac{1}{2} (e+f x)\right )\right )}{a^3 (c-d)^3 f}\\ &=-\frac{2 d^3 \tan ^{-1}\left (\frac{d+c \tan \left (\frac{1}{2} (e+f x)\right )}{\sqrt{c^2-d^2}}\right )}{a^3 (c-d)^3 \sqrt{c^2-d^2} f}-\frac{\cos (e+f x)}{5 (c-d) f (a+a \sin (e+f x))^3}-\frac{(2 c-7 d) \cos (e+f x)}{15 a (c-d)^2 f (a+a \sin (e+f x))^2}-\frac{\left (2 c^2-9 c d+22 d^2\right ) \cos (e+f x)}{15 (c-d)^3 f \left (a^3+a^3 \sin (e+f x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.713297, size = 301, normalized size = 1.62 \[ \frac{\left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right ) \left (2 \left (2 c^2-9 c d+22 d^2\right ) \sin \left (\frac{1}{2} (e+f x)\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^4-\frac{30 d^3 \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^5 \tan ^{-1}\left (\frac{c \tan \left (\frac{1}{2} (e+f x)\right )+d}{\sqrt{c^2-d^2}}\right )}{\sqrt{c^2-d^2}}+6 (c-d)^2 \sin \left (\frac{1}{2} (e+f x)\right )+(c-d) (7 d-2 c) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3+2 (2 c-7 d) (c-d) \sin \left (\frac{1}{2} (e+f x)\right ) \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^2-3 (c-d)^2 \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )\right )}{15 a^3 f (c-d)^3 (\sin (e+f x)+1)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sin[e + f*x])^3*(c + d*Sin[e + f*x])),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(6*(c - d)^2*Sin[(e + f*x)/2] - 3*(c - d)^2*(Cos[(e + f*x)/2] + Sin[(e
+ f*x)/2]) + 2*(2*c - 7*d)*(c - d)*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2 + (c - d)*(-2*c +
7*d)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3 + 2*(2*c^2 - 9*c*d + 22*d^2)*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] +
 Sin[(e + f*x)/2])^4 - (30*d^3*ArcTan[(d + c*Tan[(e + f*x)/2])/Sqrt[c^2 - d^2]]*(Cos[(e + f*x)/2] + Sin[(e + f
*x)/2])^5)/Sqrt[c^2 - d^2]))/(15*a^3*(c - d)^3*f*(1 + Sin[e + f*x])^3)

________________________________________________________________________________________

Maple [A]  time = 0.095, size = 325, normalized size = 1.8 \begin{align*} -2\,{\frac{{d}^{3}}{f{a}^{3} \left ( c-d \right ) ^{3}\sqrt{{c}^{2}-{d}^{2}}}\arctan \left ( 1/2\,{\frac{2\,c\tan \left ( 1/2\,fx+e/2 \right ) +2\,d}{\sqrt{{c}^{2}-{d}^{2}}}} \right ) }+4\,{\frac{c}{f{a}^{3} \left ( c-d \right ) ^{2} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) ^{2}}}-6\,{\frac{d}{f{a}^{3} \left ( c-d \right ) ^{2} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) ^{2}}}-{\frac{16\,c}{3\,f{a}^{3} \left ( c-d \right ) ^{2}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) ^{-3}}+{\frac{20\,d}{3\,f{a}^{3} \left ( c-d \right ) ^{2}} \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) ^{-3}}-2\,{\frac{{c}^{2}}{f{a}^{3} \left ( c-d \right ) ^{3} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) }}+6\,{\frac{cd}{f{a}^{3} \left ( c-d \right ) ^{3} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) }}-6\,{\frac{{d}^{2}}{f{a}^{3} \left ( c-d \right ) ^{3} \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) }}-{\frac{8}{5\,f{a}^{3} \left ( c-d \right ) } \left ( \tan \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) ^{-5}}+4\,{\frac{1}{f{a}^{3} \left ( c-d \right ) \left ( \tan \left ( 1/2\,fx+e/2 \right ) +1 \right ) ^{4}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))^3/(c+d*sin(f*x+e)),x)

[Out]

-2/f/a^3*d^3/(c-d)^3/(c^2-d^2)^(1/2)*arctan(1/2*(2*c*tan(1/2*f*x+1/2*e)+2*d)/(c^2-d^2)^(1/2))+4/f/a^3/(c-d)^2/
(tan(1/2*f*x+1/2*e)+1)^2*c-6/f/a^3/(c-d)^2/(tan(1/2*f*x+1/2*e)+1)^2*d-16/3/f/a^3/(c-d)^2/(tan(1/2*f*x+1/2*e)+1
)^3*c+20/3/f/a^3/(c-d)^2/(tan(1/2*f*x+1/2*e)+1)^3*d-2/f/a^3/(c-d)^3/(tan(1/2*f*x+1/2*e)+1)*c^2+6/f/a^3/(c-d)^3
/(tan(1/2*f*x+1/2*e)+1)*c*d-6/f/a^3/(c-d)^3/(tan(1/2*f*x+1/2*e)+1)*d^2-8/5/f/a^3/(c-d)/(tan(1/2*f*x+1/2*e)+1)^
5+4/f/a^3/(c-d)/(tan(1/2*f*x+1/2*e)+1)^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^3/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.07473, size = 3800, normalized size = 20.43 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^3/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[1/30*(6*c^4 - 12*c^3*d + 12*c*d^3 - 6*d^4 - 2*(2*c^4 - 9*c^3*d + 20*c^2*d^2 + 9*c*d^3 - 22*d^4)*cos(f*x + e)^
3 + 2*(4*c^4 - 18*c^3*d + 25*c^2*d^2 + 18*c*d^3 - 29*d^4)*cos(f*x + e)^2 + 15*(d^3*cos(f*x + e)^3 + 3*d^3*cos(
f*x + e)^2 - 2*d^3*cos(f*x + e) - 4*d^3 + (d^3*cos(f*x + e)^2 - 2*d^3*cos(f*x + e) - 4*d^3)*sin(f*x + e))*sqrt
(-c^2 + d^2)*log(((2*c^2 - d^2)*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2 + 2*(c*cos(f*x + e)*sin(f*x +
e) + d*cos(f*x + e))*sqrt(-c^2 + d^2))/(d^2*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2)) + 6*(3*c^4 - 11*
c^3*d + 15*c^2*d^2 + 11*c*d^3 - 18*d^4)*cos(f*x + e) - 2*(3*c^4 - 6*c^3*d + 6*c*d^3 - 3*d^4 - (2*c^4 - 9*c^3*d
 + 20*c^2*d^2 + 9*c*d^3 - 22*d^4)*cos(f*x + e)^2 - 3*(2*c^4 - 9*c^3*d + 15*c^2*d^2 + 9*c*d^3 - 17*d^4)*cos(f*x
 + e))*sin(f*x + e))/((a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f*cos(f*
x + e)^3 + 3*(a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f*cos(f*x + e)^2
- 2*(a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f*cos(f*x + e) - 4*(a^3*c^
5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f + ((a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c
^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f*cos(f*x + e)^2 - 2*(a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 +
2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f*cos(f*x + e) - 4*(a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d
^3 - 3*a^3*c*d^4 + a^3*d^5)*f)*sin(f*x + e)), 1/15*(3*c^4 - 6*c^3*d + 6*c*d^3 - 3*d^4 - (2*c^4 - 9*c^3*d + 20*
c^2*d^2 + 9*c*d^3 - 22*d^4)*cos(f*x + e)^3 + (4*c^4 - 18*c^3*d + 25*c^2*d^2 + 18*c*d^3 - 29*d^4)*cos(f*x + e)^
2 + 15*(d^3*cos(f*x + e)^3 + 3*d^3*cos(f*x + e)^2 - 2*d^3*cos(f*x + e) - 4*d^3 + (d^3*cos(f*x + e)^2 - 2*d^3*c
os(f*x + e) - 4*d^3)*sin(f*x + e))*sqrt(c^2 - d^2)*arctan(-(c*sin(f*x + e) + d)/(sqrt(c^2 - d^2)*cos(f*x + e))
) + 3*(3*c^4 - 11*c^3*d + 15*c^2*d^2 + 11*c*d^3 - 18*d^4)*cos(f*x + e) - (3*c^4 - 6*c^3*d + 6*c*d^3 - 3*d^4 -
(2*c^4 - 9*c^3*d + 20*c^2*d^2 + 9*c*d^3 - 22*d^4)*cos(f*x + e)^2 - 3*(2*c^4 - 9*c^3*d + 15*c^2*d^2 + 9*c*d^3 -
 17*d^4)*cos(f*x + e))*sin(f*x + e))/((a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a
^3*d^5)*f*cos(f*x + e)^3 + 3*(a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f
*cos(f*x + e)^2 - 2*(a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f*cos(f*x
+ e) - 4*(a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f + ((a^3*c^5 - 3*a^3
*c^4*d + 2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f*cos(f*x + e)^2 - 2*(a^3*c^5 - 3*a^3*c^4*d +
2*a^3*c^3*d^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f*cos(f*x + e) - 4*(a^3*c^5 - 3*a^3*c^4*d + 2*a^3*c^3*d
^2 + 2*a^3*c^2*d^3 - 3*a^3*c*d^4 + a^3*d^5)*f)*sin(f*x + e))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))**3/(c+d*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.40248, size = 491, normalized size = 2.64 \begin{align*} -\frac{2 \,{\left (\frac{15 \,{\left (\pi \left \lfloor \frac{f x + e}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (c\right ) + \arctan \left (\frac{c \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) + d}{\sqrt{c^{2} - d^{2}}}\right )\right )} d^{3}}{{\left (a^{3} c^{3} - 3 \, a^{3} c^{2} d + 3 \, a^{3} c d^{2} - a^{3} d^{3}\right )} \sqrt{c^{2} - d^{2}}} + \frac{15 \, c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{4} - 45 \, c d \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{4} + 45 \, d^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{4} + 30 \, c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{3} - 105 \, c d \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{3} + 135 \, d^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{3} + 40 \, c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} - 135 \, c d \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} + 185 \, d^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right )^{2} + 20 \, c^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) - 75 \, c d \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) + 115 \, d^{2} \tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) + 7 \, c^{2} - 24 \, c d + 32 \, d^{2}}{{\left (a^{3} c^{3} - 3 \, a^{3} c^{2} d + 3 \, a^{3} c d^{2} - a^{3} d^{3}\right )}{\left (\tan \left (\frac{1}{2} \, f x + \frac{1}{2} \, e\right ) + 1\right )}^{5}}\right )}}{15 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^3/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

-2/15*(15*(pi*floor(1/2*(f*x + e)/pi + 1/2)*sgn(c) + arctan((c*tan(1/2*f*x + 1/2*e) + d)/sqrt(c^2 - d^2)))*d^3
/((a^3*c^3 - 3*a^3*c^2*d + 3*a^3*c*d^2 - a^3*d^3)*sqrt(c^2 - d^2)) + (15*c^2*tan(1/2*f*x + 1/2*e)^4 - 45*c*d*t
an(1/2*f*x + 1/2*e)^4 + 45*d^2*tan(1/2*f*x + 1/2*e)^4 + 30*c^2*tan(1/2*f*x + 1/2*e)^3 - 105*c*d*tan(1/2*f*x +
1/2*e)^3 + 135*d^2*tan(1/2*f*x + 1/2*e)^3 + 40*c^2*tan(1/2*f*x + 1/2*e)^2 - 135*c*d*tan(1/2*f*x + 1/2*e)^2 + 1
85*d^2*tan(1/2*f*x + 1/2*e)^2 + 20*c^2*tan(1/2*f*x + 1/2*e) - 75*c*d*tan(1/2*f*x + 1/2*e) + 115*d^2*tan(1/2*f*
x + 1/2*e) + 7*c^2 - 24*c*d + 32*d^2)/((a^3*c^3 - 3*a^3*c^2*d + 3*a^3*c*d^2 - a^3*d^3)*(tan(1/2*f*x + 1/2*e) +
 1)^5))/f